Pharmacologic Modulators of Nitric Oxide Exacerbate Tubulointerstitial Inflammation in Proteinuric Rats

Author:

RANGAN GOPALA K.,WANG YIPING,HARRIS DAVID C. H.

Abstract

Abstract. Nitric oxide (NO) regulates inflammatory responses partly by cell-specific inhibition of the transcription factor nuclear factor κB (NF-κB). This study investigated the effect of continuous oral administration of an NO donor (molsidomine [Mol]), NO precursor (L-arginine [L-arg]), or selective inhibitors of inducible NO synthase (iNOS; aminoguanidine [AG], L-N6-(1-iminoethyl)lysine [L-NIL]) on the progression of tubulointerstitial inflammation and NF-κB activation in a non-immune model of chronic glomerular disease (Adriamycin nephropathy [AN]), from day 8 until day 30 after disease induction. On day 30, rats with AN had heavy proteinuria, reduced creatinine clearance, and tubulointerstitial disease. Treatment with both AG and L-NIL exacerbated the progression of AN as evidenced by (1) increased renal cortical malondialdehyde; (2) reduced creatinine clearance; and (3) increased tubular atrophy, interstitial volume, and monocyte infiltration. Unexpectedly, Mol also increased renal malondialdehyde and worsened tubular injury, whereas L-arg had no effect. The increase in renal cortical NF-κB activation in AN was not altered by AG, L-NIL, or Mol, but the mRNA expression of monocyte chemoattractant protein-1, interleukin-10, and osteopontin were elevated in these groups. Nitrite release from kidney slices reduced in AN. Treatment with Mol restored renal nitrite release to normal, whereas neither L-arg nor the NOS inhibitors had an effect. It is concluded that endogenous iNOS-derived NO has a protective role against tubulointerstitial injury and cytokine production in AN. However, the pro-oxidant activity of NO donors may limit their potential benefit in proteinuric renal disease.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3