Endogenous IL-33 Contributes to Kidney Ischemia-Reperfusion Injury as an Alarmin

Author:

Ferhat Maroua,Robin Aurélie,Giraud Sébastien,Sena Sandra,Goujon Jean-Michel,Touchard Guy,Hauet Thierry,Girard Jean-Philippe,Gombert Jean-Marc,Herbelin André,Thierry Antoine

Abstract

Inflammation is a prominent feature of ischemia-reperfusion injury (IRI), which is characterized by leukocyte infiltration and renal tubular injury. However, signals that initiate these events remain poorly understood. We examined the role of the nuclear alarmin IL-33 in tissue injury and innate immune response triggered by experimental kidney ischemia-reperfusion. In wild-type mice, we found that IL-33 was constitutively expressed throughout the kidney in peritubular and periglomerular spaces, mainly by microvascular endothelial cells, from which it was released immediately during IRI. Compared with wild-type mice, mice lacking IL-33 (IL-33Gt/Gt) exhibited reductions in early tubular cell injury and subsequent renal infiltration of IFN-γ/IL-17A–producing neutrophils, with preservation of renal functions. This protection associated with decreased renal recruitment of myeloid dendritic cells, natural killer (NK) cells, and invariant natural killer T (iNKT) cells, the latter of which were reported as deleterious in IRI. Increases in the level of circulating IL-12, a key IL-33 cofactor, and the expression of ST2, an IL-33–specific receptor, on the surface of iNKT cells preceded the IL-33– and iNKT cell–dependent phase of neutrophil infiltration. Furthermore, IL-33 directly targeted iNKT cells in vitro, inducing IFN-γ and IL-17A production. We propose that endogenous IL-33 is released as an alarmin and contributes to kidney IRI by promoting iNKT cell recruitment and cytokine production, resulting in neutrophil infiltration and activation at the injury site. Our findings show a novel molecular mediator contributing to innate immune cell recruitment induced by renal ischemia-reperfusion and may provide therapeutic insights into AKI associated with renal transplantation.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3