Thrombin Stimulates Synthesis of Type IV Collagen and Tissue Inhibitor of Metalloproteinases-1 by Cultured Human Mesangial Cells

Author:

KAIZUKA MITSUAKI,YAMABE HIDEAKI,OSAWA HIROSHI,OKUMURA KEN,FUJIMOTO NOBORU

Abstract

Abstract. Glomerular accumulation of extracellular matrix (ECM) is the common pathologic feature following glomerular injury, and the alteration in the synthesis and degradation of ECM may be involved in the glomerular accumulation of ECM. Glomerular fibrin formation occurs in various forms of human and experimental glomerulonephritis, and it may play an important role in progressive glomerular injury. Thrombin, a multifunctional serine proteinase that is generated at the site of vascular injury, has central functions in hemostasis and it also shows various biologic effects. In this study, it is hypothesized that thrombin may alter the production and the degradation of type IV collagen, which is an important component of ECM in the glomeruli. Human mesangial cells (HMC) were cultured, and the levels of type IV collagen, tissue inhibitor of metalloproteinase-1 (TIMP-1), and matrix metalloproteinase-2 (MMP-2) in the culture supernatants were measured by enzyme immunoassay using specific antibodies. MMP-2 activity was also evaluated by zymography using polyacrylamide/sodium dodecyl sulfate gel-containing gelatin. Thrombin increased the production of type IV collagen and TIMP-1 in a dose- and time-dependent manner, but it did not increase MMP-2. Thrombin also stimulated the gene expressions of the type IV collagen and TIMP-1 in HMC in a dose- and time-dependent manner. Thrombin treated with diisopropylfluorophosphate, a serine proteinase inhibitor, did not show any of these effects. Hirudin, a natural thrombin inhibitor, and anti-transforming growth factor-β-neutralizing antibody inhibited the stimulating effect of thrombin. These findings suggest that thrombin may contribute to the excessive accumulation of ECM and progression of glomerulosclerosis through an increase of type IV collagen production and a decreased matrix degradation presumably via a transforming growth factor-β-dependent mechanism.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3