All four putative ligand-binding domains in megalin contain pathogenic epitopes capable of inducing passive Heymann nephritis.

Author:

Yamazaki H,Ullrich R,Exner M,Saito A,Orlando R A,Kerjaschki D,Farquhar M G

Abstract

Megalin (gp330) is the main target antigen involved in the induction of Heymann nephritis (HN), a rat model of human membranous nephropathy. Its large extracellular region contains four putative ligand-binding domains separated by spacer regions. Previously, it was reported that the second ligand-binding domain (LBD II) of megalin is involved in the pathogenesis of passive HN because it is capable of binding antibodies in vivo and initiating formation of immune deposits (ID). This study explores the possibility that pathogenic epitopes might also be present in the other putative ligand-binding domains. Recombinant fragments of ligand-binding domains (LBD) I through IV expressed in a baculovirus system were used to generate polyclonal domain-specific antibodies. Antibodies raised against each of the recombinant megalin fragments reacted preferentially with its respective antigen and with whole megalin by immunoblotting. Each of the antibodies also gave a characteristic brush-border staining for megalin by indirect immunofluorescence on rat kidney. When rats were injected with the domain-specific antibodies to test their ability to produce passive HN, glomerular ID were present in kidneys of all injected animals. The staining pattern in glomeruli of rats injected with LBD I, III, or IV was similar to that obtained with antibodies to LBD II. It is concluded that passive HN can be induced with antibodies against LBD I, III, and IV, as well as LBD II, and that each of the ligand-binding domains contains a pathogenic epitope. These findings provide further evidence for the multiple epitope model of HN.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3