Author:
Auwardt R B,Mudge S J,Chen C G,Power D A
Abstract
Nuclear factor kappaB (NF-kappaB) is one of the most important proinflammatory transcription factors. The anti-inflammatory activity of steroids in leukocytes is partly due to inhibition of signaling by NF-kappaB, but it is not known whether steroids inhibit NF-kappaB in kidney cells. Since the mesangial cell is important in several kidney diseases, especially mesangial proliferative glomerulonephritis, the aims of this study were: (1) to define the mechanism of NF-kappaB activation in rat glomerular mesangial cells; and (2) to determine whether steroids inhibit activation of NF-kappaB in these cells. Electrophoretic mobility shift assays (EMSA) showed that interleukin-1beta and tumor necrosis factor-alpha activated NF-kappaB from 15 min to 48 h after stimulation. Supershift EMSA demonstrated that p65 and p50 were the predominant subunits involved. Degradation of the inhibitory subunit IkappaB-alpha was first observed 15 min after stimulation by Western blot, was maximal at 15 to 30 min (>90% by densitometry), and had returned to near normal levels at 90 min. In contrast, IkappaB-beta was maximally degraded at 60 to 120 min and was still reduced at 48 h (<50% of the untreated level). Although treatment of mesangial cells with dexamethasone increased IkappaB-alpha mRNA by 1.92x and protein by 1.45x over controls, pretreatment did not inhibit degradation of IkappaB-alpha or -beta in response to stimulation, or prevent the increase in NF-kappaB binding activity shown by EMSA. However, dexamethasone significantly inhibited the increase in monocyte chemoattractant protein-1 mRNA seen after stimulation with interleukin 1beta, although this was not complete. It did not reduce transcription of an NF-kappaB reporter. In comparison, the pyrrolidine derivative of dithiocarnamate (PDTC), a known inhibitor of NF-kappaB, prevented the increase in NF-kappaB binding activity and significantly reduced transcription of the NF-kappaB reporter. These studies suggest that steroids can partially inhibit transcriptional activation by NF-kappaB in mesangial cells but not through an increase in IkappaB-alpha protein alone. Their effect must occur at the promoter and may be restricted to some NF-kappaB-responsive genes. Therapies that block NF-kappaB more effectively than steroids in mesangial cells, therefore, may be useful in the treatment of mesangial proliferative glomerulonephritis.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献