In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation.

Author:

Abbate M,Zoja C,Corna D,Capitanio M,Bertani T,Remuzzi G

Abstract

Progression to end-stage renal failure is the final common pathway of many forms of glomerular disease, independent of the type of initial insult. Progressive glomerulopathies have in common persistently high levels of urinary protein excretion and tubulointerstitial lesions at biopsy. Among the cellular mechanisms that may determine progression regardless of etiology, the traffic of excess proteins filtered from glomerulus in renal tubule may have functional importance by initiating interstitial inflammation in the early phase of parenchymal injury. This study analyzes the time course and sites of protein accumulation and interstitial cellular infiltration in two different models of proteinuric nephropathies. In remnant kidneys after 5/6 renal mass ablation, albumin and IgG accumulation by proximal tubular cells was visualized in the early stage, preceding interstitial infiltration of MHC-II-positive cells and macrophages. By double-staining, infiltrates developed at or near tubules containing intracellular IgG or luminal casts. This relationship persisted thereafter despite more irregular distribution of infiltrate. Similar patterns were found in an immune model (passive Heymann nephritis), indicating that the interstitial inflammatory reaction develops at the sites of protein overload, regardless of the type of glomerular injury. Osteopontin was detectable in cells of proximal tubules congested with protein in both models at sites of interstitial infiltration, and by virtue of its chemoattractive action this is likely mediator of a proximal tubule-dependent inflammatory pathway in response to protein load. Protein overload of tubules is a key candidate process translating glomerular protein leakage into cellular signals of interstitial inflammation. Mechanisms underlying the proinflammatory response of tubular cells to protein challenge in diseased kidney should be explored, as well as ways of limiting protein reabsorption/deposition to prevent consequent inflammation and progressive disease.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3