Abstract
BackgroundGalloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease.MethodsHomozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified.ResultsThree biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein’s zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes.ConclusionsVariants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.
Funder
National Institutes of Health
German Ministry of Education and Research
Baden-Wuerttemberg Stiftung
Care for Rare Foundation
Eva Luise and Horst Köhler Foundation
Else Kröner Fresenius Foundation
Volkswagen Foundation
National Medical Research Council
National Research Foundation
German Research Foundation
CNRS/INSERM
Ruth L. Kirschstein National Research
Kidney Foundation of Canada
Canadian Society of Nephrology
Canadian Institutes of Health Research
Harvard Stem Cell Institute
American Society of Nephrology
Yale Center for Mendelian Genomics
Broad Institute of MIT
Harvard Center for Mendelian Genomics
National Human Genome Research Institute
National Eye Institute
National Heart, Lung and Blood Institute
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献