Interleukin-10 Inhibits Macrophage-Induced Glomerular Injury

Author:

HUANG XIOU RU,KITCHING A. RICHARD,TIPPING PETER G.,HOLDSWORTH STEPHEN R.

Abstract

The ability of interleukin-10 (IL-10) to inhibit macrophage recruitment, activation, and proliferation in vivo was studied in a macrophage-mediated, but T cell-independent, passive anti-glomerular basement membrane antibody-induced model of glomerulonephritis (GN) in rats. Treatment with recombinant murine IL-10 resulted in dose-dependent reductions in proteinuria (high dose: 16 ± 1 mg/24 h; low dose: 30 ± 2 mg/24 h; control treatment: 69 ± 6 mg/24 h; normal: 7 ± 1 mg/24 h) and glomerular macrophage recruitment (high dose: 1.8 ± 0.1 macrophages per glomerular cross section [c/gcs]; low dose: 5.5 ± 0.2 c/gcs; control treatment: 12.1 ± 0.6 c/gcs). Macrophage and intrinsic glomerular cell proliferation were reduced at both doses of IL-10, as was glomerular expression of P-selectin and monocyte chemoattractant protein-1. IL-10 treatment also resulted in a dose-dependent reduction of macrophage activation as indicated by MHC class II and IL-1β expression. Glomerular nitrite production by isolated cultured glomeruli was reduced after IL-10 treatment in vivo (high dose: 2.3 ± 2.3 nmol/104 glomeruli per 72 h; low dose: 28 ± 5 nmol/104 glomeruli per 72 h; control treatment: 82 ± 11 nmol/104 glomeruli per 72 h). Tumor necrosis factor-α production was abolished by high-dose treatment and reduced by the lower dose (3.8 ± 3.8 pg/104 glomeruli per 72 h; control treatment: 249 ± 23 pg/104 glomeruli per 72 h). These studies demonstrate that IL-10 directly attenuates glomerular macrophage recruitment, activation, and proliferation in vivo and can significantly attenuate macrophage-mediated GN independent of any effects on T cells.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3