Impact of Hyperglycemia on the Renin Angiotensin System in Early Human Type 1 Diabetes Mellitus

Author:

MILLER JUDITH A.

Abstract

Abstract. It has been demonstrated previously that moderate hyperglycemia without glucosuria can increase plasma renin activity and mean arterial pressure in young healthy males with early uncomplicated type 1 diabetes mellitus. This study was conducted to extend these observations by testing the hypothesis that mild to moderate hyperglycemia can affect renal function by increasing renin angiotensin system (RAS) activity in diabetic humans. The study included 10 men and women with early, uncomplicated type 1 diabetes (duration <5 yr), all ingesting a controlled sodium and protein diet. They were studied on four separate occasions, during a subdepressor dose of the angiotensin II (AngII) receptor blocker losartan, and during graded AngII infusion, 1.5 and 2.5 ng/kg per min, while euglycemic (blood glucose 4 to 6 mmol/L) and again while hyperglycemic without glucosuria (blood glucose 9 to 11 mmol/L), according to a randomized crossover design. Outcome measures included mean arterial pressure (MAP), GFR, effective renal plasma flow (ERPF), renal vascular resistance (RVR), filtration fraction (FF), and urine sodium excretion (UNaV) at baseline and in response to the above maneuvers. During hyperglycemic conditions, MAP was significantly higher compared with euglycemia, as were RVR and FF. After the administration of losartan, a significant renal and peripheral depressor effect was noted, with decreases in MAP, RVR, and FF, whereas during euglycemia the responses to losartan were minimal. AngII infusion resulted in elevations in MAP, RVR, and FF and a decline in UNaV during both glycemic phases, but the responses during hyperglycemia, most significantly at the 1.5 ng/kg per min infusion rate, were blunted. These data support the hypothesis that hyperglycemia affects renal function by activating the RAS. The mechanism remains obscure, but these contrasting responses may provide a link between the observations that maintenance of euglycemia and blockade of the RAS prevent or delay diabetic kidney disease, and furthermore, may clarify the mechanism whereby high glucose promotes renal disease progression in diabetes.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3