Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury.

Author:

Zalups R K,Barfuss D W

Abstract

Mechanisms involved in the renal uptake of inorganic mercury were studied in rats administered a nontoxic 0.5 mumol/kg intravenous dose of inorganic mercury with or without 2.0 mumol/kg cysteine, homocysteine, or N-acetylcysteine. The renal disposition of mercury was studied 1 h after treatment in normal rats and rats that had undergone bilateral ureteral ligation. In addition, the disposition of mercury (including the urinary and fecal excretion of mercury) was evaluated 24 h after treatment. In normal rats, coadministering inorganic mercury plus cysteine or homocysteine caused a significant increase in the renal uptake of mercury 1 h after treatment. The enhanced renal uptake of mercury was due to increased uptake of mercury in the renal outer stripe of the outer medulla and/or renal cortex. Ureteral ligation caused reductions in the renal uptake of mercury in all groups except for the one treated with inorganic mercury plus N-acetylcysteine. Thus, it appears that virtually all of the mercury taken up by the kidneys of the normal rats treated with inorganic mercury plus N-acetylcysteine occurred at the basolateral membrane. Urinary excretory data also support this notion, in that the rate of excretion of inorganic mercury was greatest in the rats treated with inorganic mercury plus N-acetylcysteine. Our data also indicate that uptake of inorganic mercury in the kidneys of rats treated with inorganic mercury plus cysteine occurred equally at both luminal and basolateral membranes. In addition, the renal uptake of mercury in rats treated with inorganic mercury plus homocysteine occurred predominantly at the basolateral membrane with some component of luminal uptake. The findings of the present study confirm that there are at least two distinct mechanisms involved in the renal uptake of inorganic mercury, with one mechanism located on the luminal membrane and the other located on the basolateral membrane. Our findings also show that cysteine and homologs of cysteine, when coadministered with inorganic mercury, greatly influence the magnitude and/or site of uptake of mercuric ions in the kidney.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transport and Toxicity of Mercury in the Kidney;Reference Module in Biomedical Sciences;2024

2. Interaction of mercury species with proteins: towards possible mechanism of mercurial toxicology;Toxicology Research;2023-05-30

3. Mercury;Handbook on the Toxicology of Metals;2022

4. Chronic Kidney Disease and Exposure to Nephrotoxic Metals;International Journal of Molecular Sciences;2017-05-12

5. Relationships between the Renal Handling of DMPS and DMSA and the Renal Handling of Mercury;Chemical Research in Toxicology;2012-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3