Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury

Author:

Xu LeyuanORCID,Sharkey Diana,Cantley Lloyd G.

Abstract

BackgroundAfter bilateral kidney ischemia/reperfusion injury (IRI), monocytes infiltrate the kidney and differentiate into proinflammatory macrophages in response to the initial kidney damage, and then transition to a form that promotes kidney repair. In the setting of unilateral IRI (U-IRI), however, we have previously shown that macrophages persist beyond the time of repair and may promote fibrosis.MethodsMacrophage homing/survival signals were determined at 14 days after injury in mice subjected to U-IRI and in vitro using coculture of macrophages and tubular cells. Mice genetically engineered to lack Ccr2 and wild-type mice were treated ±CCR2 antagonist RS102895 and subjected to U-IRI to quantify macrophage accumulation, kidney fibrosis, and inflammation 14 and 30 days after the injury.ResultsFailure to resolve tubular injury after U-IRI results in sustained expression of granulocyte-macrophage colony-stimulating factor by renal tubular cells, which directly stimulates expression of monocyte chemoattractant protein-1 (Mcp-1) by macrophages. Analysis of CD45+ immune cells isolated from wild-type kidneys 14 days after U-IRI reveals high-level expression of the MCP-1 receptor Ccr2. In mice lacking Ccr2 and wild-type mice treated with RS102895, the numbers of macrophages, dendritic cells, and T cell decreased following U-IRI, as did the expression of profibrotic growth factors and proimflammatory cytokines. This results in a reduction in extracellular matrix and kidney injury markers.ConclusionsGM-CSF–induced MCP-1/CCR2 signaling plays an important role in the cross-talk between injured tubular cells and infiltrating immune cells and myofibroblasts, and promotes sustained inflammation and tubular injury with progressive interstitial fibrosis in the late stages of U-IRI.

Funder

NIH

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3