Improving Contact Area between the Peritoneum and Intraperitoneal Therapeutic Solutions

Author:

FLESSNER MICHAEL F.,LOFTHOUSE JOANNE,ZAKARIA EL RASHEID

Abstract

Abstract. A general assumption in peritoneal dialysis or intraperitoneal chemotherapy has been that a volume of 2 to 3 L in the human is sufficient to make contact with the entire anatomic peritoneum. On the basis of our previous experimental work and that of others, it was hypothesized that only a fraction of the anatomic peritoneum was in contact with the therapeutic solution in the cavity over a short period of time. It was also hypothesized that use of agitation of the experimental animal or a surfactant in the dialysis fluid would increase the contact area of the intraperitoneal solution. These hypotheses were tested by developing a method to measure the peritoneal contact area simultaneously with the anatomic peritoneal area. Anesthetized mice (25 to 35 g) received an injection of a relatively large volume (10 ml) of isotonic solution containing a radiolabeled protein that adhered to the peritoneum with which it came in contact. After a dwell of 1 to 24 h, the animal was killed and frozen. Cross sections of the abdominal and pelvic cavities were cut and placed against film to develop into autoradiograms, which represent the linear dimension of fluid contact in each sampling plane. The tissue sections that corresponded to the autoradiograms were stained to display the linear dimension of the anatomic peritoneum in the sampling plane. By imaging both the autoradiogram and the corresponding histologic slide, an estimate of the ratio of the contact area to anatomic area in each plane can be calculated (Rmean = average of all ratios). Applying this method to mice that were dialyzed with an isotonic salt solution under quiescent conditions for 1 h produced Rmean = 0.43 ± 0.03. With rapid shaking of the animal, Rmean = 0.54 ± 0.03 (P < 0.05). Addition of the surfactant dioctyl sodium sulfosuccinate (DSS) 0.5% to the solution under quiescent conditions increased Rmean to 1.07 ± 0.03 (P < 0.001). Lengthening the dwell of the isotonic solution to 24 h increased Rmean to >0.90. In further study of the effect of the concentration of DSS on contact area, there was a direct correlation of Rmean with concentrations ranging from 0.0005 to 0.05% DSS. It is concluded that less than half of the mouse peritoneum is in contact with a large volume of solution in the peritoneal cavity. Maneuvers such as agitation and use of surfactant in the intraperitoneal solution increase the fraction of contact area. Also demonstrated was a direct dose-response of contact area versus intraperitoneal concentration of DSS, which may be useful in intraperitoneal therapies of peritoneal dialysis or intraperitoneal chemotherapy.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Reference19 articles.

1. Putiloff PV: Materials for the study of the laws of growth of the human body in relation to the surface areas of different systems: The trial on Russian subjects of planigraphic anatomy as a means for exact anthropometry. One of the problems of anthropology. Report of the Meeting of the Siberian Branch of the Russian Geographic Society, October 29,1884 , Omsk, 1886

2. Measurements of Peritoneal Surface Area in Man and Rat

3. Peritoneal dialysis efficiency in relation to body weight

4. Acetylcholine and Delirium

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Animal Models for Peritoneal Dialysis Research;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

2. Basic Science and Translational Research in Peritoneal Dialysis;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

3. Intraperitoneal Chemotherapy;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

4. Basic Science and Translational Research in Peritoneal Dialysis;Nolph and Gokal's Textbook of Peritoneal Dialysis;2021

5. Solute and Water Transport Across the Peritoneal Barrier;Critical Care Nephrology;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3