Cellular Distribution and Function of Soluble Guanylyl Cyclase in Rat Kidney and Liver

Author:

THEILIG FRANZISKA,BOSTANJOGLO MAGDALENA,PAVENSTÄDT HERMANN,GRUPP CLEMENS,HOLLAND GUDRUN,SLOSAREK ILKA,GRESSNER AXEL M.,RUSSWURM MICHAEL,KOESLING DORIS,BACHMANN SEBASTIAN

Abstract

Abstract. Soluble guanylyl cyclase (sGC) catalyzes the biosynthesis of cGMP in response to binding of L-arginine-derived nitric oxide (NO). Functionally, the NO-sGC-cGMP signaling pathway in kidney and liver has been associated with regional hemodynamics and the regulation of glomerular parameters. The distribution of the ubiquitous sGC isoform α1β1 sGC was studied with a novel, highly specific antibody against the β1 subunit. In parallel, the presence of mRNA encoding both subunits was investigated by using in situ hybridization and reverse transcription-PCR assays. The NO-induced, sGC-dependent accumulation of cGMP in cytosolic extracts of tissues and cells was measured in vitro. Renal glomerular arterioles, including the renin-producing granular cells, mesangium, and descending vasa recta, as well as cortical and medullary interstitial fibroblasts, expressed sGC. Stimulation of isolated mesangial cells, renal fibroblasts, and hepatic Ito cells with a NO donor resulted in markedly increased cytosolic cGMP levels. This assessment of sGC expression and activity in vascular and interstitial cells of kidney and liver may have implications for understanding the role of local cGMP signaling cascades.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3