Consecutive use of hormonally defined serum-free media to establish highly differentiated human renal proximal tubule cells in primary culture.

Author:

Courjault-Gautier F,Chevalier J,Abbou C C,Chopin D K,Toutain H J

Abstract

Highly differentiated human proximal tubule (HPT) cells in primary culture were established from heterogeneous suspension of tubules prepared from the human renal cortex by an original two-step procedure. First, gluconeogenic-competent HPT cells were selected by using a hormonally defined serum-free medium without glucose or insulin; then, the selected HPT cells were grown in a medium containing a low concentration of glucose (1 mM) and insulin (0.5 micrograms/mL) but no antibiotics. HPT cells grown on plastic support formed confluent, cobblestone-like monolayers with numerous mitochondria and pinocytosis vacuoles, solitary cilia, junctional complexes, and a well-developed brush border consisting of densely packed microvilli. Compared with cell monolayers on plastic support, HPT cells grown on porous filter membranes showed better morphologic differentiation. HPT cell monolayers expressed the following differentiated functions of the proximal tubule in situ: a low-affinity, high-capacity Na(+)-dependent glucose transport system inhibited by phlorizin, a high-affinity Na(+)-dependent phosphate transport system, a basolateral organic cation uptake inhibited by mepiperphenidol, parathyroid hormone-sensitive cAMP synthesis, brush-border hydrolase activities, gluconeogenesis-associated enzymes, glutathione-S-transferases and N-acetyl-beta-D-glucosaminidase. The medium containing low glucose and insulin concentrations markedly limited the increase in glycolysis but did not prevent the falls in gluconeogenesis and brush-border hydrolase activity at any time of the culture period. Similar decreases of brush border enzyme activities were obtained for HPT cells grown either on plastic or on porous filter membrane. A thorough characterization study demonstrated that this simple and preparative experimental approach makes it possible to establish highly differentiated HPT cells in primary culture suitable for investigating human renal proximal tubular cell function.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3