The effects of soluble recombinant complement receptor 1 on complement-mediated experimental glomerulonephritis.

Author:

Couser W G,Johnson R J,Young B A,Yeh C G,Toth C A,Rudolph A R

Abstract

Complement is a major mediator of tissue injury in several types of glomerulonephritis. However, no therapeutic agents that inhibit complement activation are available for human use. sCR1 (TP10, BRL 55736) is a recombinant, soluble human complement receptor 1 (CR1) molecule lacking transmembrane and cytoplasmic domains that inhibits C3 and C5 convertase activity by preferentially binding C4b and C3b. To test the efficacy of sCR1 on complement-mediated glomerulonephritis, rats were pretreated with sCR1 (60 mg/kg per day) before and during the induction of three models of complement-dependent glomerulonephritis (concanavalin A and antithymocyte serum models of proliferative glomerulonephritis, passive Heyman nephritis). Daily sCR1 and complement hemolytic activity levels were measured, and renal histology and urine protein excretion were examined. Mean serum sCR1 levels of 100 to 200 micrograms/mL were maintained with a reduction in complement hemolytic activity to less than 15% in most animals. In the antithymocyte serum model, sCR1-treated animals had significant reductions in mesangiolysis, glomerular platelet and macrophage infiltrates, and proteinuria at 48 h. In the concanavalin A model, sCR1 significantly reduced glomerular C3 and fibrin deposits, platelet infiltrates, and proteinuria at 48 h. In passive Heymann nephritis, proteinuria was also significantly reduced (199 +/- 8.5 versus 125 +/- 16 mg/day, P < 0.002) at 5 days. It was concluded that sCR1 significantly reduces both morphologic and functional consequences of several different types of complement-mediated glomerulonephritis and deserves evaluation as a potential therapeutic agent in complement-mediated immune glomerular disease in humans.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3