Tubular cell protein degradation in early diabetic renal hypertrophy.

Author:

Shechter P,Boner G,Rabkin R

Abstract

Renal hypertrophy in diabetes is accompanied by an increase in kidney protein content, which reflects an imbalance between protein synthesis and degradation. This study determines whether altered cellular protein degradation contributes to the imbalance. Diabetes was induced in rats with streptozotocin (55 mg/kg/ip). After 2 or 4 days of diabetes, kidney weight and protein content were measured. Over the 4 days, despite a loss in body weight, kidney wet weight increased by 35% and protein content by 37% in the diabetic rats. Treatment with insulin prevented this increase. Long-lived protein degradation was measured in isolated proximal tubules prelabeled with (14C)valine in vivo. Two days after streptozotocin, protein degradation was depressed by 19% (P < 0.05) and by the fourth day by 27% compared with that in nondiabetic controls (2.6% +/- 0.2 versus 1.9 +/- 0.1% degraded/h; P < 0.01). This was accompanied by a similar diabetes-induced decrease in proximal tubule cathepsin B and L activity. Accordingly, this study provides direct evidence that, in diabetes, tubular cell protein breakdown is depressed and suggests that altered lysosomal cathepsin activity may contribute to this effect. Depressed proteolysis likely contributes to the increase in kidney protein content and hence to diabetic renal hypertrophy.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3