Author:
GWINNER WILFRIED,PLASGER JENS,BRANDES RALF P.,KUBAT BIRGIT,SCHULZE MATTHIAS,REGELE HEINZ,KERJASCHKI DONTSCHO,OLBRICHT CHRISTOPH J.,KOCH KARL-MARTIN
Abstract
Abstract. Passive Heymann nephritis (PHN) in rats is a model of human membranous nephropathy characterized by formation of subepithelial immune deposits in the glomerular capillary wall and complement activation. Oxygen radicals have been implicated in the subsequent glomerular damage which leads to proteinuria. This study examines the involvement of xanthine oxidase in this process. Xanthine oxidase activity was increased nearly twofold in glomeruli isolated 1 and 12 d after induction of PHN, and this was associated with increased glomerular superoxide anion generation. Analysis of glomerular samples by Northern and Western blotting revealed no quantitative changes in xanthine oxidoreductase expression in PHN, suggesting conversion of xanthine dehydrogenase to the oxidase form as the cause of increased activity. Treatment of rats with tungsten, an inhibitor of xanthine oxidase, before induction of PHN resulted in a marked decrease in glomerular xanthine oxidase activity and superoxide anion generation, and decreased proteinuria by 80% (day 12: 423 ± 245 mg/d in PHN versus 78 ± 53 mg/d in tungsten-treated PHN animals, P < 0.01). These findings point to a pivotal role of xanthine oxidase in the pathophysiology of PHN and could be of importance in the therapy of human membranous nephropathy.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献