A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles

Author:

Bayraktar Samet,Nehrig Julian,Menis EkaterinaORCID,Karli Kevser,Janning Annette,Struk ThaddäusORCID,Halbritter Jan,Michgehl Ulf,Krahn Michael P.,Schuberth Christian E.,Pavenstädt Hermann,Wedlich-Söldner RolandORCID

Abstract

BackgroundMonogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response—calcium mediated actin reset, or CaAR—that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot–Marie–Tooth disease that are accompanied by nephropathy, mostly FSGS.MethodsWe used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot–Marie–Tooth disease.ResultsWe found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot–Marie–Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation.ConclusionsOur results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.

Funder

DFG

IZKF Münster

Deutsche Forschungsgemeinschaft

German Research Foundation

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3