Successful Introduction of Human Renovascular Units into the Mammalian Kidney

Author:

Pleniceanu Oren,Harari-Steinberg Orit,Omer Dorit,Gnatek Yehudit,Lachmi Bat-El,Cohen-Zontag Osnat,Manevitz-Mendelson Eugenia,Barzilai Aviv,Yampolsky Matan,Fuchs Yaron,Rosenzweig Barak,Eisner Alon,Dotan Zohar,Fine Leon G.,Dekel Benjamin,Greenberger Shoshana

Abstract

BackgroundCell-based therapies aimed at replenishing renal parenchyma have been proposed as an approach for treating CKD. However, pathogenic mechanisms involved in CKD such as renal hypoxia result in loss of kidney function and limit engraftment and therapeutic effects of renal epithelial progenitors. Jointly administering vessel-forming cells (human mesenchymal stromal cells [MSCs] and endothelial colony-forming cells [ECFCs]) may potentially result in in vivo formation of vascular networks.MethodsWe administered renal tubule–forming cells derived from human adult and fetal kidneys (previously shown to exert a functional effect in CKD mice) into mice, alongside MSCs and ECFCs. We then assessed whether this would result in generation of “renovascular units” comprising both vessels and tubules with potential interaction.ResultsDirectly injecting vessel-forming cells and renal tubule–forming cells into the subcutaneous and subrenal capsular space resulted in self-organization of donor-derived vascular networks that connected to host vasculature, alongside renal tubules comprising tubular epithelia of different nephron segments. Vessels derived from MSCs and ECFCs augmented in vivo tubulogenesis by the renal tubule–forming cells. In vitro coculture experiments showed that MSCs and ECFCs induced self-renewal and genes associated with mesenchymal–epithelial transition in renal tubule–forming cells, indicating paracrine effects. Notably, after renal injury, renal tubule–forming cells and vessel-forming cells infused into the renal artery did not penetrate the renal vascular network to generate vessels; only administering them into the kidney parenchyma resulted in similar generation of human renovascular units in vivo.ConclusionsCombined cell therapy of vessel-forming cells and renal tubule–forming cells aimed at alleviating renal hypoxia and enhancing tubulogenesis holds promise as the basis for new renal regenerative therapies.

Funder

Israel Medical Association Society for Research, Prevention and Treatment of Atherosclerosis

Israel Society of Atherosclerosis and Vascular Biology

Israel Cancer Association

Tel Aviv University

Israel Science Foundation

Euro-Asian Jewish Congress

Lisa and David Pulver Family Foundation

Mikhael Mirilashvili Fund

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3