Regulation of Aquaporin-1 and Nitric Oxide Synthase Isoforms in a Rat Model of Acute Peritonitis

Author:

COMBET SOPHIE,VAN LANDSCHOOT MIEKE,MOULIN PIERRE,PIECH ALINA,VERBAVATZ JEAN-MARC,GOFFIN ERIC,BALLIGAND JEAN-LUC,LAMEIRE NORBERT,DEVUYST OLIVIER

Abstract

Abstract. The loss of ultrafiltration (UF) that accompanies acute peritonitis is a common problem in peritoneal dialysis (PD). It has been suggested that changes in nitric oxide (NO)-mediated vascular tone and permeability might be involved in the loss of UF, whereas channel-mediated water permeability should not be affected. This study used a model of acute peritonitis in rats to characterize changes in PD parameters, in correlation with: (1) expression studies of water channel aquaporin-1 and NO synthase (NOS) isoforms and (2) enzymatic assays for NOS in the peritoneum. Compared with controls, rats with peritonitis had a higher removal of plasma urea, a faster glucose absorption, and a loss of UF. Additional changes, including high protein loss, elevated leukocyte counts in dialysate, positive bacterial cultures, edema, and mononuclear infiltrates, were similar to those observed in PD patients with acute peritonitis. Acute peritonitis in rats induced a major increase in total NOS activity, which was inversely correlated with free-water permeability. The increased NOS activity was mediated by both inducible (Ca2+-independent) and endothelial (Ca2+-dependent) NOS isoforms and was reflected by increased peritoneal staining for nitrotyrosine. In contrast, aquaporin-1 expression was unchanged in rats with peritonitis. These findings cast light on the pathophysiology of permeability changes and loss of UF that characterize acute peritonitis. In particular, these data suggest that a local production of NO, mediated by different NOS isoforms, might play a key role in these changes.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Animal Models for Peritoneal Dialysis Research;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

2. The Physiology and Pathophysiology of Peritoneal Transport;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

3. Ultrafiltration Failure;Nolph and Gokal's Textbook of Peritoneal Dialysis;2023

4. Establishment of a novel mouse peritoneal dialysis-associated peritoneal injury model;Clinical and Experimental Nephrology;2022-03-30

5. Ultrafiltration Failure;Nolph and Gokal's Textbook of Peritoneal Dialysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3