Transglutaminase Transcription and Antigen Translocation in Experimental Renal Scarring

Author:

JOHNSON TIMOTHY S.,SKILL N. JAMES,EL NAHAS A. MEGUID,OLDROYD SIMON D.,THOMAS GRAHAM L.,DOUTHWAITE JULIE A.,HAYLOR JOHN L.,GRIFFIN MARTIN

Abstract

Abstract. It was recently demonstrated that renal tissue transglutaminase (tTg) protein and its catalytic product the ϵ(γ-glutamyl) lysine protein cross-link are significantly increased in the subtotal (5/6) nephrectomy model (SNx) of renal fibrosis in rats. It was proposed that the enzyme had two important physiologic functions in disease development; one of stabilizing the increased extracellular matrix (ECM) by protein crosslinking, the other in a novel form of tubular cell death. This study, using the same rat SNx model, demonstrates first by Northern blotting that expression of tTg mRNA when compared with controls is increased by day 15 (+70% increase, P < 0.05), then rises steadily, peaking at day 90 (+391%, P < 0.01), and remains elevated at 120 d (+205%, P < 0.05) when compared with controls. In situ hybridization histochemistry demonstrated that the tubular cells were the major site of the additional tTg synthesis. Immunohistochemistry on cryostat sections revealed a sixfold increase (P < 0.001) in ECM-bound tTg antigen at 90-d post-SNx, whereas in situ transglutaminase activity demonstrated by the incorporation of fluorescein cadaverine into cryostat sections indicated a 750% increase (P < 0.001) on day 90 in SNx animals. This increased activity was extracellular and predominantly found in the peritubular region. These results indicate that increased tTg gene transcription by tubular cells underlies the major changes in renal tTg protein reported previously in SNx rats, and that the presence of the ϵ(γ-glutamyl) lysine cross-links in the extracellular environment is the result of the extracellular action of tTg. These changes may be in response to tubular cell injury during the scarring process and are likely to contribute to the progressive expansion of the ECM in renal fibrosis.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3