Regulation of Potassium Channel Kir 1.1 (ROMK) Abundance in the Thick Ascending Limb of Henle's Loop

Author:

ECELBARGER CAROLYN A.,KIM GHEUN-HO,KNEPPER MARK A.,LIU JIE,TATE MARGARET,WELLING PAUL A.,WADE JAMES B.

Abstract

Abstract. The renal outer medullary potassium channel (ROMK) of the thick ascending limb (TAL) is a critical component of the counter-current multiplication mechanism. In this study, two new antibodies raised to ROMK were used to investigate changes in the renal abundance of ROMK with treatments known to strongly promote TAL function. These antibodies specifically recognized protein of the predicted size of 45 kD in immunoblots of rat kidney or COS cells transfected with ROMK cDNA. Infusion of 1-deamino-(8-D-arginine)-vasopressin (dDAVP), a vasopressin V2 receptor-selective agonist, for 7 d into Brattleboro rats resulted in dramatic increases in apical membrane labeling of ROMK in the TAL of dDAVP-treated rats, as assessed by immunocytochemical analyses. Using immunoblotting, a more than threefold increase in immunoreactive ROMK levels was observed in the outer medulla after dDAVP infusion. Restriction of water intake to increase vasopressin levels also significantly increased TAL ROMK immunolabeling and abundance in immunoblots. In addition, dietary Na+ levels were varied to determine whether ROMK abundance was also affected under other conditions known to alter TAL transport. Rats fed higher levels of sodium, as either NaCl or NaHCO3 (8 mEq/250 g body wt per d), exhibited significantly increased density of the 45-kD band, compared with the respective control animals. Moreover, in rats fed a low-NaCl diet (0.25 mEq/250 g body wt per d), a 50% decrease in band density for the 45-kD band was observed (relative to control rats fed 2.75 mEq/250 g body wt per d of NaCl). These results demonstrate that long-term adaptive changes in ROMK abundance occur in the TAL with stimuli that enhance transport by this segment.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3