Author:
VALLON VOLKER,GRAHAMMER FLORIAN,RICHTER KERSTIN,BLEICH MARKUS,LANG FLORIAN,BARHANIN JACQUES,VÖLKL HARALD,WARTH RICHARD
Abstract
Abstract. The electrochemical gradient for K+ across the luminal membrane of the proximal tubule favors K+ fluxes to the lumen. Here it was demonstrated by immunohistochemistry that KCNE1 and KCNQ1, which form together the slowly activated component of the delayed rectifying K+ current in the heart, also colocalize in the luminal membrane of proximal tubule in mouse kidney. Micropuncture experiments revealed a reduced K+ concentration in late proximal and early distal tubular fluid as well as a reduced K+ delivery to these sites in KCNE1 knockout (-/-), compared with wild-type (+/+) mice. These observations would be consistent with KCNE1-dependent K+ fluxes to the lumen in proximal tubule. Electrophysiological studies in isolated perfused proximal tubules indicated that this K+ flux is essential to counteract membrane depolarization due to electrogenic Na+-coupled transport of glucose or amino acids. Clearance studies revealed an enhanced fractional urinary excretion of fluid, Na+, Cl-, and glucose in KCNE1 -/- compared with KCNE1 +/+ mice that may relate to an attenuated transport in proximal tubule and contribute to volume depletion in these mice, as indicated by higher hematocrit values.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献