Ser-322 Is a Critical Site for PKC Regulation of the MDCKCell Taurine Transporter (pNCT)

Author:

HAN XIAOBIN,BUDREAU ANDREA M.,CHESNEY RUSSELL W.

Abstract

Abstract. Previous studies have shown that the Madin—Darby canine kidney cell taurine transporter (pNCT) is downregulated by protein kinase C (PKC) activation. In this study, it is hypothesized that the highly conserved serine-322 (Ser-322) located in the fourth intracellular segment (S4) may play an important role in the function of taurine transporter, which is modulated by PKC phosphorylation. It is demonstrated that Ser-322 is the critical site of PKC phosphorylation, as determined by site-directed mutagenesis. When Ser-322 of pNCT was changed to alanine (S322A) and this mutant was evaluated in an oocyte expression system, taurine transport activity increased threefold compared with control (wild-type pNCT). Activation of PKC by the active phorbol ester 12-myristate 13-acetate did not influence taurine transport by mutant S322A. Kinetic analysis showed that the mutation of Ser-322 essentially changed the Vmax, rather than the Km, of the transporter. Mutation of all other PKC consensus sites did not affect transporter activity when expressed in the oocyte system. Western blot analysis showed that expression of taurine transporter protein was similar in oocytes injected with either wild-type or mutant pNCT cRNA, indicating that the enhanced taurine transport activity by mutant S322A was not caused by a greater amount of transporter expressed in the oocyte. Furthermore, this study demonstrated that the taurine transporter was phosphorylated after PKC activation, and this effect was not observed in mutant S322A. In conclusion, Ser-322 is critical in PKC regulation of taurine transporter activity. The steady-state taurine transporter activity is tightly controlled by endogenous PKC phosphorylation of Ser-322, which is located in the fourth intracellular segment of the taurine transporter.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3