Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients

Author:

Hinze Christian,Karaiskos Nikos,Boltengagen Anastasiya,Walentin Katharina,Redo Klea,Himmerkus Nina,Bleich Markus,Potter S. Steven,Potter Andrew S.,Eckardt Kai-Uwe,Kocks ChristineORCID,Rajewsky Nikolaus,Schmidt-Ott Kai M.ORCID

Abstract

BackgroundSingle-cell transcriptomes from dissociated tissues provide insights into cell types and their gene expression and may harbor additional information on spatial position and the local microenvironment. The kidney’s cells are embedded into a gradient of increasing tissue osmolality from the cortex to the medulla, which may alter their transcriptomes and provide cues for spatial reconstruction.MethodsSingle-cell or single-nuclei mRNA sequencing of dissociated mouse kidneys and of dissected cortex, outer, and inner medulla, to represent the corticomedullary axis, was performed. Computational approaches predicted the spatial ordering of cells along the corticomedullary axis and quantitated expression levels of osmo-responsive genes. In situ hybridization validated computational predictions of spatial gene-expression patterns. The strategy was used to compare single-cell transcriptomes from wild-type mice to those of mice with a collecting duct–specific knockout of the transcription factor grainyhead-like 2 (Grhl2CD−/−), which display reduced renal medullary osmolality.ResultsSingle-cell transcriptomics from dissociated kidneys provided sufficient information to approximately reconstruct the spatial position of kidney tubule cells and to predict corticomedullary gene expression. Spatial gene expression in the kidney changes gradually and osmo-responsive genes follow the physiologic corticomedullary gradient of tissue osmolality. Single-nuclei transcriptomes from Grhl2CD−/− mice indicated a flattened expression gradient of osmo-responsive genes compared with control mice, consistent with their physiologic phenotype.ConclusionsSingle-cell transcriptomics from dissociated kidneys facilitated the prediction of spatial gene expression along the corticomedullary axis and quantitation of osmotically regulated genes, allowing the prediction of a physiologic phenotype.

Funder

German Research Foundation

Urological Research Foundation

Berlin Institute of Health Charité

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3