Dysregulated Dynein-Mediated Trafficking of Nephrin Causes INF2-related Podocytopathy

Author:

Sun HuaORCID,Perez-Gill Chandra,Schlöndorff Johannes SORCID,Subramanian Balajikarthick,Pollak Martin R.

Abstract

BackgroundFSGS caused by mutations in INF2 is characterized by a podocytopathy with mistrafficked nephrin, an essential component of the slit diaphragm. Because INF2 is a formin-type actin nucleator, research has focused on its actin-regulating function, providing an important but incomplete insight into how these mutations lead to podocytopathy. A yeast two-hybridization screen identified the interaction between INF2 and the dynein transport complex, suggesting a newly recognized role of INF2 in regulating dynein-mediated vesicular trafficking in podocytes.MethodsLive cell and quantitative imaging, fluorescent and surface biotinylation-based trafficking assays in cultured podocytes, and a new puromycin aminoglycoside nephropathy model of INF2 transgenic mice were used to demonstrate altered dynein-mediated trafficking of nephrin in INF2 associated podocytopathy.ResultsPathogenic INF2 mutations disrupt an interaction of INF2 with dynein light chain 1, a key dynein component. The best-studied mutation, R218Q, diverts dynein-mediated postendocytic sorting of nephrin from recycling endosomes to lysosomes for degradation. Antagonizing dynein-mediated transport can rescue this effect. Augmented dynein-mediated trafficking and degradation of nephrin underlies puromycin aminoglycoside-induced podocytopathy and FSGS in vivo.ConclusionsINF2 mutations enhance dynein-mediated trafficking of nephrin to proteolytic pathways, diminishing its recycling required for maintaining slit diaphragm integrity. The recognition that dysregulated dynein-mediated transport of nephrin in R218Q knockin podocytes opens an avenue for developing targeted therapy for INF2-mediated FSGS.

Funder

National Institutes of Health

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3