Abstract
BackgroundAntiglomerular basement membrane (anti-GBM) disease is characterized by GN and often pulmonary hemorrhage, mediated by autoantibodies that typically recognize cryptic epitopes within α345(IV) collagen—a major component of the glomerular and alveolar basement membranes. Laminin-521 is another major GBM component and a proven target of pathogenic antibodies mediating GN in animal models. Whether laminin-521 is a target of autoimmunity in human anti-GBM disease is not yet known.MethodsA retrospective study of circulating autoantibodies from 101 patients with anti-GBM/Goodpasture’s disease and 85 controls used a solid-phase immunoassay to measure IgG binding to human recombinant laminin-521 with native-like structure and activity.ResultsCirculating IgG autoantibodies binding to laminin-521 were found in about one third of patients with anti-GBM antibody GN, but were not detected in healthy controls or in patients with other glomerular diseases. Autoreactivity toward laminin-521 was significantly more common in patients with anti-GBM GN and lung hemorrhage, compared with those with kidney-limited disease (51.5% versus 23.5%, P=0.005). Antilaminin-521 autoantibodies were predominantly of IgG1 and IgG4 subclasses and significantly associated with lung hemorrhage (P=0.005), hemoptysis (P=0.008), and smoking (P=0.01), although not with proteinuria or serum creatinine at diagnosis.ConclusionsBesides α345(IV) collagen, laminin-521 is another major autoantigen targeted in anti-GBM disease. Autoantibodies to laminin-521 may have the potential to promote lung injury in anti-GBM disease by increasing the total amount of IgG bound to the alveolar basement membranes.
Funder
National Institute of Minority Health and Health Disparities
National Key Research and Development Program
National Natural Science Foundation of China
Chinese Academy of Medical Sciences
US Department of Defense
Dialysis Clinic
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献