Assessment of Perfusion and Oxygenation of the Human Renal Cortex and Medulla by Quantitative MRI during Handgrip Exercise

Author:

Haddock Bryan ThomasORCID,Francis Susan T.,Larsson Henrik B.W.,Andersen Ulrik B.

Abstract

BackgroundRenal flow abnormalities are believed to play a central role in the pathogenesis of nephropathy and in primary and secondary hypertension, but are difficult to measure in humans. Handgrip exercise is known to reduce renal arterial flow (RAF) by means of increased renal sympathetic nerve activity.MethodsTo monitor medullary and cortical oxygenation under handgrip exercise–reduced perfusion, we used contrast- and radiation-free magnetic resonance imaging (MRI) to measure regional changes in renal perfusion and blood oxygenation in ten healthy normotensive individuals during handgrip exercise. We used phase-contrast MRI to measure RAF, arterial spin labeling to measure perfusion, and both changes in transverse relaxation time (T2*) and dynamic blood oxygenation level–dependent imaging to measure blood oxygenation.ResultsHandgrip exercise induced a significant decrease in RAF. In the renal medulla, this was accompanied by an increase of oxygenation (reflected by an increase in T2*) despite a significant drop in medullary perfusion; the renal cortex showed a significant decrease in both perfusion and oxygenation. We also found a significant correlation (R2=0.8) between resting systolic BP and the decrease in RAF during handgrip exercise.ConclusionsRenal MRI measurements in response to handgrip exercise were consistent with a sympathetically mediated decrease in RAF. In the renal medulla, oxygenation increased despite a reduction in perfusion, which we interpreted as the result of decreased GFR and a subsequently reduced reabsorptive workload. Our results further indicate that the renal flow response’s sensitivity to sympathetic activation is correlated with resting BP, even within a normotensive range.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3