Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats.

Author:

Earm J H,Christensen B M,Frøkiaer J,Marples D,Han J S,Knepper M A,Nielsen S

Abstract

Hypercalcemia is frequently associated with a urinary concentrating defect and overt polyuria. The molecular mechanisms underlying this defect are poorly understood. Dysregulation of aquaporin-2 (AQP2), the predominant vasopressin-regulated water channel, is known to be associated with a range of congenital and acquired water balance disorders including nephrogenic diabetes insipidus and states of water retention. This study examines the effect of hypercalcemia on the expression of AQP2 in rat kidney. Rats were treated orally for 7 d with dihydrotachysterol, which produced significant hypercalcemia with a 15 +/- 2% increase in plasma calcium concentration. Immunoblotting and densitometry of membrane fractions revealed a significant decrease in AQP2 expression in kidney inner medulla of hypercalcemic rats to 45.7 +/- 6.8% (n = 11) of control levels (100 +/- 12%, n = 9). A similar reduction in AQP2 expression was seen in cortex (36.9 +/- 4.2% of control levels, n = 6). Urine production increased in parallel, from 11.3 +/- 1.4 to a maximum of 25.3 +/- 1.9 ml/d (P < 0.01), whereas urine osmolality decreased from 2007 +/- 186 mosmol/kg x H2O to 925 +/- 103 mosmol/kg x H2O (P < 0.01). Immunocytochemistry confirmed a decrease in total AQP2 labeling of collecting duct principal cells from kidneys of hypercalcemic rats, and reduced apical labeling. Immunoelectron microscopy demonstrated a significant reduction in AQP2 labeling of the apical plasma membrane, consistent with the development of polyuria. In summary, the results strongly suggest that AQP2 downregulation and reduced apical plasma membrane delivery of AQP2 play important roles in the development of polyuria in association with hypercalcemia.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autophagy and regulation of aquaporins in the kidneys;Kidney Research and Clinical Practice;2023-11-30

2. ‘Aquaporin‐omics’: mechanisms of aquaporin‐2 loss in polyuric disorders;The Journal of Physiology;2023-05-11

3. Primary Hyperparathyroidism;Small Animal Soft Tissue Surgery;2023-03-10

4. Physical Properties of Urine;Urinalysis in the Dog and Cat;2023-01-27

5. Diabetes Insipidus;Pediatric Kidney Disease;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3