Podocytes Respond to Mechanical Stress In Vitro

Author:

ENDLICH NICOLE,KRESS KAI R.,REISER JOCHEN,UTTENWEILER DIETMAR,KRIZ WILHELM,MUNDEL PETER,ENDLICH KARLHANS

Abstract

Abstract. Glomerular capillary pressure is thought to affect the structure and function of glomerular cells. However, it is unknown whether podocytes are intrinsically sensitive to mechanical forces. In the present study, differentiated mouse podocytes were cultured on flexible silicone membranes. Biaxial cyclic stress (0.5 Hz and 5% linear strain) was applied to the membranes for up to 3 d. Mechanical stress reduced the size of podocyte cell bodies, and processes became thin and elongated. Podocytes did not align in the inhomogeneous force field. Whereas the network of microtubules and that of the intermediate filament vimentin exhibited no major changes, mechanical stress induced a reversible reorganization of the actin cytoskeleton: transversal stress fibers (SF) disappeared and radial SF that were connected to an actin-rich center (ARC) formed. Epithelial and fibroblast cell lines did not exhibit a comparable stress-induced reorganization of the F-actin. Confocal and electron microscopy revealed an ellipsoidal and dense filamentous structure of the ARC. Myosin II, α-actinin, and the podocyte-specific protein synaptopodin were present in radial SF, but, opposite to F-actin, they were not enriched in the ARC. The formation of the ARC and of radial SF in response to mechanical stress was inhibited by nonspecific blockade of Ca2+ influx with Ni2+ (1 mM), by Rho kinase inhibition with Y-27632 (10 μM), but not by inhibition of stretch-activated cation channels with Gd3+ (50 μM). In summary, mechanical stress induces a unique reorganization of the actin cytoskeleton in podocytes, featuring radial SF and an ARC, which differ in protein composition. The F-actin reorganization in response to mechanical stress depends on Ca2+ influx and Rho kinase. The present study provides the first direct evidence that podocytes are mechanosensitive.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3