Abstract
Several interesting numbers such as the homotopy invariant numbers the Lefschets number L(f), the Nielsen number N(f), fixed point index i(X, f,U) and the Reidemeister number R(f) play important roles in the study of fixed point theorems. The Nielsen number gives more geometric information about fixed points than other numbers. However the Nielsen number is hard to compute in general. To compute the Nielsen number, Jiang related it to the Reidemeister number R(f ) of the induced homomorphism f : 1(X) 1(X) when X is a lens space or an H-space (Jian type space). For such spaces, either N(f) = 0 or N(f) = R(f) the Reidemeister number of f and if R(f) = then N(f) = 0 which implies that f is homotopic to a fixed point free map. This is a review article to discuss how these numbers are related in fixed point theory.
Publisher
Area de Innovacion y Desarrollo, S.L. 3 Ciencias
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献