Deep Learning Network-Based Evaluation method of Online teaching quality of International Chinese Education

Author:

Lai Wenling

Abstract

The development of vocational education in the information age requires us to think about the path and strategy of active change. Course teaching quality evaluation should also shift from passive evaluation of online teaching development to active construction of a mixed teaching quality evaluation system. In the information age, the development of teaching resources is dizzying. From paper to digital, from single to diverse, from offline to online, from scarcity to mass—various changes impact the traditional teaching model. Aiming at the online teaching quality evaluation of international Chinese education on the Internet, this paper proposes a method based on deep learning. Firstly, this paper proposes an index system construction and evaluation index weighting for online teaching of international Chinese education, and collects online data as a corpus at the same time. Then construct the CNN_BiLSTM_Att model, which is composed of the CNN module, the BiLSTM module and the Att module. Finally, compare with other model experiments. The experimental results show that CNN_BiLSTM_Att has achieved the best results in the evaluation index results, with P and F1 reaching 97.89% and 97.85%. Compared with other models, the overall effect is improved by 2%~5%. From this, the superiority of the model in the online teaching quality evaluation standard task of this paper can be obtained.

Publisher

Area de Innovacion y Desarrollo, S.L. 3 Ciencias

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Teaching Quality Monitoring Mechanism of Colleges and Universities Based on Internet+Education Mode;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Research on English Teaching Quality Evaluation based on Fuzzy Comprehensive Evaluation based on K-Means Clustering Algorithm;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3