Big Data Analytics as an elementary Customer Loyalty Instrument for German banks – an empirical approach from a banker’s perspective

Author:

Giebe Carsten1ORCID,Zwerenz Dirk2ORCID,Hammerström Lennart1ORCID

Affiliation:

1. MATE Hungarian University of Agriculture and Life Sciences, Hungary

2. IU International University – Distance learning, Germany

Abstract

The German banking sector is undergoing a massive transformation phase due to increasing digitalization. This challenge is enormously influenced by demographic change, the low-interest phase, technological progress as well as supervision and regulation. As a result, banks in Germany are forced to deal with strategies for customer centricity. In this context, Big Data analytics can be seen as a useful tool to better understand customers, e.g. by predicting product affinities, purchase probabilities or distribution channel preferences. The consolidated view of Big Data Analytics and Customer Centricity is already considered in the scientific literature. The studies on the combination of Big Data Analytics and the German banking sector, on the other hand, are rudimentary so far. The main purpose of this research is to answer the following research questions: [I: “Does Big Data Analytics improve the quality of advice (measured by the principles of client advisory services) from an advisor’s perspective and does it have an influence on customer loyalty?”] and [II: To what extent can Big Data Analytics make a positive contribution to the situation of banks in the age of digitalization?”]. To answer the research questions, the results of a survey of banking experts (N = 43) form the backbone of this empirical research. The findings of this paper can be of benefit to researchers and practitioners alike, in order to make the potential of big data analytics recognizable and usable for banks in the context of customer centricity.

Publisher

Academic Research and Publishing U.G.

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference29 articles.

1. Arbeitgeberverband des privaten Bankgewerbes (2021). Altersstruktur der Beschäftigten im privaten Bankgewerbe.

2. Au, CD., & Hiese, A. (2021). Künstliche Intelligenz in Banken: Worauf es im aktuellen Marktumfeld ankommt. Digitale Welt 5, 26–29.

3. Behr, P., & Schmidt, R. (2015). The German banking system: Characteristics and challenges, SAFE White Paper, 32, Goethe University Frankfurt a. M.

4. Brühl, V. (2019). Big Data, Data Mining, Machine Learning und Predictive Analytics: Ein konzeptioneller Überblick. CFS Working Paper Series, 617.

5. Damaschke, C., & Giebe, C. (2020). Sparkassen-Data Analytics: Den Datenschatz der Sparkassen-Finanzgruppe heben, In: Erich R. Utz, Digitalisierung – “the next challenge” für Sparkassen. [Savings Bank Data Analytics: Raising the data treasure of the Savings Banks Finance Group, In: Erich R. Utz, Digitization – “the next challenge” for Savings Banks]. Handlungsfelder zur künftigen Gestaltung des Geschäftsmodells in Sparkassen, 139-154. Deutscher Sparkassenverlag, Stuttgart.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3