Simulation of Reverse Osmosis Process: Novel Approaches and Development Trends

Author:

Huliienko S. V.1ORCID,Korniyenko Y. M.1ORCID,Muzyka S. M.1,Holubka K.2

Affiliation:

1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremohy Ave., 03056, Kyiv, Ukraine

2. University of Montpellier, 163, Auguste Broussonnet St., 34090, Montpellier, France

Abstract

Reverse osmosis is an essential technological separation process that has a large number of practical applications. The mathematical simulation is significant for designing and determining the most effective modes of membrane equipment operation and for a deep understanding of the processes in membrane units. This paper is an attempt at systematization and generalizing the results of the investigations dedicated to reverse osmosis simulation, which was published from 2011 to 2020. The main approaches to simulation were analyzed, and the scope of use of each of them was delineated. It was defined that computational fluid dynamics was the most used technique for reverse osmosis simulation; the intensive increase in using of molecular dynamics methods was pointed out. Since these two approaches provide the deepest insight into processes, it is likely that they will further be widely used for reverse osmosis simulations. At the same time, for the simulation of the membrane plant, it is reasonable to use the models that required the simplest solutions methods. The solution-diffusion model appears to be the most effective and flexible for these purposes. Therefore, this model was widely used in considering the period. The practical problems solved using each of the considered approaches were reviewed. Moreover, the software used for the solution of the mathematical models was regarded.

Publisher

Sumy State University

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3