Effects of Cryogenically Treated CFRP Composite on the Buckling Behavior in the Adhesively Bonded Beam

Author:

Uysal M. U.1ORCID

Affiliation:

1. Yildiz Technical University, Department of Mechanical Engineering, Yildiz Campus, Besiktas, Istanbul, Turkey

Abstract

Carbon fiber reinforced plastic (CFRP) composite materials have favorable mechanical and physical properties such as low density, high strength-to-weight ratio, high fatigue resistance and high creep behavior, and high stiffness. Thanks to these unique properties, they produce aircraft parts such as outer flaps, carry-through structures, and center wing boxes and automotive parts such as body panels, engine components, and structure members. However, studies have been continuously performed on improving the properties of CFRP composite materials. Recently, investigation of the effects of cryogenic (LN2) cooling on the mechanical behavior and characteristic of these composite materials is getting a popular and important issue. In this sense, this study aims to examine the buckling behaviors of adhesively bonded beam-produced cryogenically treated carbon fiber reinforced plastic (Cryo-CFRP), CFRP, steel, and aluminum. Therefore, a new finite element model was adopted to evaluate the buckling capacity of Cryo-CFRP composite material in the adhesively bonded beam. The model is a supported adhesive beam subject to two opposite-edge compressions until the material buckles. The elastic, homogeneous adhesive was used in the assembly. Finite element models for the adhesively bonded beam having four different adherents (CRFP, Cryo-CFRP, steel, and aluminum) were established by ANSYS® software. The critical buckling loads of the adhesively bonded beam were predicted, and their mode shapes were presented for the first six modes. The effects of the usage of Cryo-CFRP on the critical buckling load were investigated. Among the adherents’ materials, the highest critical buckling load was determined for Cryo-CFRP/Steel adhesively bonded beam as 23.6 N. This value was obtained as 22.3 N for CFRP/Steel adherent samples. Thus, the critical buckling load was increased by 5.6 % when one adherent steel was constant and the other adherent material changed from CFRP to Cryo-CFRP. Also, the critical buckling load increased by 3.7 % when using a cryogenically treated Cryo-CFRP/Aluminum couple instead of a CFRP/Aluminum couple in the sandwich beam. The findings demonstrated that the cryogenic treatment positively affects the buckling behavior in the adhesively bonded beam.

Publisher

Sumy State University

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3