Simulation of Point Defects Formation in the Fuel Element of a Nuclear Power Plant’s Wave Reactor

Author:

Opyatyuk V. V.1ORCID,Kozlov I. L.1ORCID,Karchev K. D.1ORCID,Vistiak S. V.1ORCID,Kozlov O. I.1ORCID,Turmanidze R.2ORCID

Affiliation:

1. Odessa Polytechnic National University, Odessa, Ukraine

2. Georgian Technical University, Tbilisi, Georgia

Abstract

This paper considers the point defects that influence the operation of a wav nuclear power reactor with a uranium fuel medium. The formed individual point defects or such defect groups can produce a perturbing effect on the stability of the nuclear reactor operating mode and involve its transition to an unstable state. Studies have been carried out on the effect on the characteristics of the nuclear burnup wave in a medium with neutron multiplication for 2D geometry. For the calculation, the uranium-thorium fissile medium has been considered. The parametric calculations were carried out with 235 U different enrichment percents and different values of neutron activation energy. At that, it was assumed that the wave (flow) reactor stable operation region is located in the range of activation energies from 10–3 eV to 1 eV or in the region from 2 MeV to 8 MeV. When calculating the neutron flux intensity in a wave reactor, the influence of point defects and their aggregates on the decelerating elastically scattered neutrons’ flux density and the flux density of decelerating non-elastically scattered neutrons was considered. The dependences of the point defects formation rate on the medium fissile temperature for several compositions of the uranium-thorium medium are obtained. As visually identified, the graphic materials obtained during the calculations are similar to the photos of fuel rods after the energy campaign.

Publisher

Sumy State University

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3