Heat Transfer and Simulated Coronary Circulation System Optimization Algorithms for Real Power Loss Reduction

Author:

Kanagasabai L.

Abstract

In this paper, the heat transfer optimization (HTO) algorithm and simulated coronary circulation system (SCCS) optimization algorithm has been designed for Real power loss reduction. In the projected HTO algorithm, every agent is measured as a cooling entity and surrounded by another agent, like where heat transfer will occur. Newton’s law of cooling temperature will be updated in the proposed HTO algorithm. Each value of the object is computed through the objective function. Then the objects are arranged in increasing order concerning the objective function value. This projected algorithm time “t” is linked with iteration number, and the value of “t” for every agent is computed. Then SCCS optimization algorithm is projected to solve the optimal reactive power dispatch problem. Actions of human heart veins or coronary artery development have been imitated to design the algorithm. In the projected algorithm candidate solution is made by considering the capillaries. Then the coronary development factor (CDF) will appraise the solution, and population space has been initiated arbitrarily. Then in the whole population, the most excellent solution will be taken as stem, and it will be the minimum value of the Coronary development factor. Then the stem crown production is called the divergence phase, and the other capillaries’ growth is known as the clip phase. Based on the arteries leader’s coronary development factor (CDF), the most excellent capillary leader’s (BCL) growth will be there. With and without L-index (voltage stability), HTO and SCCS algorithm’s validity are verified in IEEE 30 bus system. Power loss minimized, voltage deviation also reduced, and voltage stability index augmented.

Publisher

Sumy State University

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3