Affiliation:
1. Department of Civil Engineering, MBM University, Air Force Area, Rajasthan, India
Abstract
Large quantities of polyethylene terephthalate (PET) plastic are discarded into the environment during production, application, and disposal. Although current clean-up strategies aim to mitigate the adverse impacts of PET pollution, efforts struggle to keep up with the escalating amount of PET waste. This accumulation of PET waste poses significant threats to ecosystems worldwide. One recycling method for PET plastic waste involves its utilization in soil reinforcement applications within civil engineering. By incorporating PET plastic waste to reinforce poor-quality sands, sustainable construction practices can be promoted in civil engineering infrastructures, addressing multiple aspects of sustainability, including engineering, economic, social, and environmental considerations. The experimental work conducted in this research involved sieve analysis, proctor compaction test, California Bearing Ratio (CBR) test, and direct shear box test. The sand was reinforced with varying percentages of PET plastic waste flakes, namely 5, 10, and 15 %, with respect to the weight of the soil sample taken for the test, and laboratory tests were performed on the samples. Including PET plastic flakes enhanced various soil properties, such as shear strength and friction angle. It also improved the CBR value of the composite, making it suitable for pavement construction. The reduction in dry density further supports the application of the composite in lightweight structures. In conclusion, the geotechnical material obtained from the soil-PET plastic waste composite can be utilized in various geotechnical projects, including landfills and slope stabilization.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献