Adsorptive Removal of Lead (II) Pollutants from Wastewater Using Corncob-Activated Carbon

Author:

Aliyu Sunusi1ORCID,Salahudeen Nurudeen1ORCID,Rasheed A. A.1

Affiliation:

1. Bayero University, Kano, Nigeria

Abstract

he level of contamination in industrial wastewater has been a serious environmental challenge of our time. Various researchers have reported that the adsorption process using different adsorbents is a promising technique for treating heavy metal-contaminated wastewater. This study investigated the adsorptive removal of lead (II) from wastewater using corncob-activated carbon. Activated carbon was synthesized from a raw corncob. The synthesized activated carbon was applied as a sorbent in batch lead (II) adsorption in an aqueous lead (II) solution. Scanning electron microscopy, Fourier transformed infrared (FTIR), and Brunauer–Emmett–Teller (BET) theory characterized the synthesized activated carbon. A batch adsorption study investigated the effects of dosage, contact time, and the initial concentration of lead (II) on the sorption of Pb2+ on the synthesized activated carbon. The highest removal of lead recorded was 95 % at an adsorbent dosage of 2.5 g/L in 2 h. The highest adsorption capacity was 16.46 mg/g at the same conditions. The results showed that percentage removal increased with dosage and contact time but decreased with the initial metal ion concentration. Adsorption kinetics were best described with the pseudo-second-order kinetics, while the Langmuir isotherm model best fitted equilibrium adsorption in the study. The FTIR results showed the presence of several functional groups like carboxyl, hydroxyl, and amino, indicating good interaction with lead metal ions. The BET characterization revealed the activated corncob’s specific surface area and pore volume to be 249 m2/g and 0.164 cm3/g. This work shows that activated carbon can be synthesized from agricultural waste such as corncob and be used as an effective adsorbent for heavy metal removal, such as lead, from wastewater.

Publisher

Sumy State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3