On the Geometric Realisation of Equal Tempered Music

Author:

Ashton-Bell Robert Linton Tavis

Abstract

Since the time of Pythagoras (c.550BC), mathematicians interested in music have asked, “What governs the whole number ratios that emerge from derivations of the harmonic series?” Simon Stevin (1548-1620) devised a mathematical underlay (where a semitone equals 21/12) that gave rise to the equal temperament tuning system we still use today. Beyond this, the structure of formalised musical orderings have eluded many of us. Music theorists use the tools and techniques of their trade to peer into the higher-order musical structures that underpin musical harmony. These methods of investigating music theory and harmony are difficult to learn (and teach), as complex abstract thought is required to imagine the components of a phenomenon that cannot be seen. This paper outlines a method to understanding the mathematical underpinnings of the equal tempered tuning system. Using this method, musical structure can be quantitatively modelled as a series of harmonic elements at each pulse of musical time.

Publisher

Christ University Bangalore

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of LSTM Model for Western Music Composition;2022 13th International Conference on Information and Communication Technology Convergence (ICTC);2022-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3