IncFIB plasmids carrying the resistance gene blaCTX-M-15 in ESBL-producing Escherichia coli clones from pediatric patients

Author:

Rocha-Gracia Rosa del Carmen,Lozano-Zarain Patricia,Gutiérrez Cázarez Zita,Alonso Carla Andrea,Brambila Eduardo,Torres Carmen,Cortés-Cortés Gerardo

Abstract

Introduction: The emergence of extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli clones are a public health concern worldwide. Scarce information does exist about the spread of ESBLs-producing E. coli in pediatric patients from developing countries. Methodology: E. coli strains were analyzed by multilocus-sequence-typing, pulsed-field-gel-electrophoresis and phylogenetic group. The antimicrobial-resistance genes were detected by PCR, and plasmid content by the PCR-based replicon-typing. Horizontal transfer was tested by conjugation and the location of the blaCTX-M-15 gene by Southern blot hybridization. Results: Thirty-two cefotaxime-resistant E. coli were recovered. Eleven of them were ESBL-producing isolates, which were well characterized and ascribed to seven sequence types and five phylogroups. The ESBL CTX-M-15 was the most prevalent enzyme (9 of 11). Plasmids of variable sizes (40-220 kb) were visualized, and the incompatibility (Inc) group FIB plasmid-replicon was detected in the ESBL strains and transferred by conjugation in 45.45% of them. Plasmid-borne toxin-antitoxin systems were the most frequently detected systems, strongly associated to IncF plasmids. The CTX-M-15-encoding gene was located on IncFIB plasmids. Conclusions: Even though a small number of ESBL-producing strains was recovered, we evidenced that IncFIB plasmids carry the blaCTX-M-15 gene, highlighting the role of IncF-type plasmids in facilitating the spread and maintenance of ESBL-encoding genes, which further favors the rapid increase of the antimicrobial resistance dissemination in disease-causing E. coli strains in pediatric patients.

Publisher

Journal of Infection in Developing Countries

Subject

Virology,Infectious Diseases,General Medicine,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3