Use of Flaviviral genetic fragments as a potential prevention strategy for HIV-1 Silencing

Author:

Sheraz Muhammad,Kanak Mazhar,Hasan Mahmudul,Bhattarai Roshan,Mahalingam Kuhanandha,Sealey Leanna A,Blackwood Rashshana R,Golkar Zhabiz,McLean Ewen,Bagasra Omar

Abstract

Introduction: Coinfection with certain members of the Flaviviridae, such as Dengue Virus (DV), West Nile Virus (WNV) Yellow Fever Virus (YFV) and most importantly, GBV-C have been documented to reduce HIV-1 viral load in vivo. Numerous studies strongly support the notion that persistent coinfection with non-pathogenic virus prolongs survival in HIV-1 infected individuals. Coinfected individuals show higher CD4+ cell counts, lower HIV-1 RNA viral loads and live three times longer than clinically matched HIV-1 monoinfected patients. We have previously shown that one of the major anti-HIV defenses conferred by GBV-C coinfection is the upregulation of intracellular miRNAs in CD4+ cells that share significant mutual homologies with GBV-C and HIV-1 (>80%) genomes. Methodology: Genome-wide bioinformatics analyses were carried out to search for miRNA binding sites in mutual homologies between HIV and several members of the Flaviviridae Results:  Several miRNAs shared significant mutual homology with HIV-1 genetic sequences and GBV-A, B, C, DV, WNV and YFV.  These may be responsible for beneficial effects in HIV-1 infected individuals. Three highly mutual homologous miRNAs (i.e. miR-627-5, miR-369-5 and miR-548f), expressed in CD4+ cell lines, reduce HIV-1 replication by up to 90% whereas miRNAs with low mutual homologies (i.e. miR-34-1 and miR-508) impart only slight inhibition of HIV-1. Conclusion: We hypothesize that a recombinant GBV-C-based vector can be constructed which expresses several beneficial genetic motifs of the Flaviviridae without causing any side effects while stimulating a wide array of beneficial miRNAs that can more efficiently prevent HIV-1 infection.

Publisher

Journal of Infection in Developing Countries

Subject

Virology,Infectious Diseases,General Medicine,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3