Detection of novel strains genetically related to Anaplasma platys in Tunisian one-humped camels (Camelus dromedarius)

Author:

Belkahia Hanène,Ben Said Mourad,Sayahi Lotfi,Alberti Alberto,Messadi Lilia

Abstract

Introduction: Little information is currently available regarding the presence of Anaplasma species in North African dromedaries. To fill this gap in knowledge, the prevalence, risk factors, and genetic diversity of Anaplasma species were investigated in Tunisian dromedary camels. Methodology: A total of 226 camels from three different bioclimatic areas were sampled and tested for the presence of Anaplasma species by quantitative polymerase chain reaction (qPCR) and nested polymerase chain reaction (nPCR) assays. Detected Anaplasma strains were characterized by 16S rRNA sequence analysis. Results: Overall infection rate of Anaplasma spp. was 17.7%, and was significantly higher in females. Notably, A. marginale, A. centrale, A. bovis, and A. phagocytophilum were not detected. Animals were severely infested by three tick species belonging to the genus Hyalomma (H. dromedarii, H. impeltatum, and H. excavatum). Alignment, similarity comparison, and phylogenetic analysis of the 16S rRNA sequence variants obtained in this study suggest that Tunisian dromedaries are infected by more than one novel Anaplasma strain genetically related to A. platys. Conclusions: This study reports the presence of novel Anaplasma sp. strains genetically related to A. platys in dromedaries from various bioclimatic areas of Tunisia. Findings raise new concerns about the specificity of the direct and indirect diagnostic tests routinely used to detect different Anaplasma species in ruminants and provide useful molecular information to elucidate the evolutionary history of bacterial species related to A. platys.

Publisher

Journal of Infection in Developing Countries

Subject

Virology,Infectious Diseases,General Medicine,Microbiology,Parasitology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3