Antibacterial activity of ciprofloxacin-impregnated 3D-printed polylactic acid discs: an in vitro study

Author:

Ruh Emrah,Mammadov EmilORCID

Abstract

Introduction: Three-dimensional (3D) printing technology allows incorporation of various substances including antibiotics into different structures. This study aimed to evaluate the antibacterial activity of ciprofloxacin-impregnated 3D discs against Escherichia coli. Methodology: Polylactic acid pellets were coated with ciprofloxacin at 1% and 2% concentrations, then filaments were produced from these pellets, and antibiotic-containing discs were obtained using fused deposition modeling 3D printers. The working temperatures during filament extrusion and 3D printing processes were 200 °C and 215 °C, respectively. Therefore, in order to test the thermal stability of ciprofloxacin during these processes, the antibiotic was exposed to 200 °C and 215 °C in an oven, and then tested against E. coli. Following this, efficiencies of antibiotic-coated pellets, filaments and discs against E. coli were determined by diffusion tests. Results: Ciprofloxacin heated at 200 °C and 215 °C was stable and retained its antibacterial activity. Pellets, filaments and discs coated with 1% or 2% concentration of ciprofloxacin produced inhibition zones in the culture plates. Increasing ciprofloxacin concentration did not significantly affect the diameter of inhibition zones (p > 0.05). Ciprofloxacin-containing polylactic acid pellets produced significantly larger inhibition zones than those of filaments and discs (p < 0.0001). The difference in zone diameters around ciprofloxacin-containing filaments and discs was not statistically significant (p > 0.05). Conclusions: Ciprofloxacin-coated polylactic acid-based 3D discs displayed antibacterial activity against E. coli. This suggests that, various polylactic acid-based ciprofloxacin-containing 3D products can be obtained and evaluated for antibacterial activity in future studies.

Publisher

Journal of Infection in Developing Countries

Subject

Virology,Infectious Diseases,General Medicine,Microbiology,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3