Antiviral innate immune response of RNA interference

Author:

Sidahmed Abubaker,Abdalla Shaza,Mahmud Salahedin,Wilkie Bruce

Abstract

RNA interference (RNAi) is an ancient, natural process conserved among species from different kingdoms. RNAi is a transcriptional and post-transcriptional gene silencing mechanism in which, double-stranded RNA or hairpin RNA is cleaved by an RNase III-type enzyme called Dicer into small interfering RNA duplex. This subsequently directs sequence-specific, homology dependent, Watson-Crick base-pairing post-transcriptional gene silencing by binding to its complementary RNA and initiating its elimination through degradation or by persuading translational inhibition. In plants, worms, and insects, RNAi is the main and strong antiviral defense mechanism. It is clear that RNAi silencing, contributes in restriction of viral infection in vertebrates. In a short period, RNAi has progressed to become a significant experimental tool for the analysis of gene function and target validation in mammalian systems. In addition, RNA silencing has then been found to be involved in translational repression, transcriptional inhibition, and DNA degradation. RNAi machinery required for robust RNAi-mediated antiviral response are conserved throughout evolution in mammals and plays a crucial role in antiviral defense of invertebrates, but despite these important functions RNAi contribution to mammalian antiviral innate immune defense has been underestimated and disputed. In this article, we review the literature concerning the roles of RNAi as components of innate immune system in mammals and how, the RNAi is currently one of the most hopeful new advances toward disease therapy. This review highlights the potential of RNAi as a therapeutic strategy for viral infection and gene regulation to modulate host immune response to viral infection.

Publisher

Journal of Infection in Developing Countries

Subject

Virology,Infectious Diseases,General Medicine,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3