Multi-layer long short-term memory (LSTM) prediction model on air pollution for Konya province

Author:

KOÇAK Yahya1,KOKLU Murat2

Affiliation:

1. SELCUK UNIVERSITY, INSTITUTE OF SCIENCE, COMPUTER ENGINEERING (MASTER) (WITH THESIS)

2. SELCUK UNIVERSITY, FACULTY OF TECHNOLOGY

Abstract

One of the main problems of the developing and changing world is air pollution. In addition to human causes such as population growth, increase in the number of vehicles producing exhaust emissions in line with the population, development of industry, natural causes such as forest fires, volcano eruptions and dust storms also play a role in increasing air pollution. Air pollution has become a bigger problem that reduces the quality of life of living beings and causes various lung and heart diseases due to reasons such as the growing proximity of settlements to industrial zones due to population growth, the increase in the number of individual vehicles, and zoning works carried out by ignoring air quality. Both international organizations and local authorities take various measures to control and prevent air pollution. In Turkey, necessary legal arrangements have been made within the scope of these measures and air quality monitoring stations have been established. The task of these stations is to measure pollutants such as PM10, CO, SO2 together with meteorological data such as air temperature, humidity, wind speed and direction. In this study, a prediction model for the future concentrations of PM10, CO and SO2 pollutants using the measurement data from three different air quality monitoring stations in Konya between January 2020 and January 2021 was realized with a multi-layer Long Short Term Memory (LSTM) artificial neural network. The Root Mean Square Deviation (RMSE) and Mean Absolute Percentage Error (MAPE) methods was used to calculate the performance of the study. As a result of the study, it is observed that the multi-layer LSTM architecture is more successful than the single-layer architecture.

Publisher

International Journal of Applied Mathematics, Electronics and Computers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3