Abstract
As the world grows, the demand for transporting goods is increasing, the number of goods in factories and ports is increasing, to transport all these goods, cranes are indispensable. In fact, currently, crane rigs working in factories and ports operate with low stability, when working or the phenomenon of swaying of the load occurs, leading to inaccurate positioning, loss of safe transportation of goods. To overcome these shortcomings, the paper proposes the design of a neural-fuzzy adaptive controller combined with an LQR controller (ANFIS-LQR) to control the forklift's position in the shortest time to achieve the desired exact position. At the same time, we want to control the deflection angle of the load so that the vibration when working is minimal. To check and evaluate the quality and stability of the system; the proposed design controller is simulated on MATLAB/Simulink software in the case of changes in system parameters and noise affecting the gantry crane system. To evaluate the superiority of the paper compared with published works, the author compares ANFIS-LQR with other published control methods such as DE-PID, Fuzzy-PD, Fuzzy dual and Fuzzy sliding, the simulation results show that the neural-fuzzy adaptive controller combined with the proposed LQR controller works well t_xlvt=2.1s , t_xlgt=3.5s, 0max=0.3(rad).
Publisher
International Journal of Applied Mathematics, Electronics and Computers