Affiliation:
1. GAZIANTEP ISLAM SCIENCE AND TECHNOLOGY UNIVERSITY, FACULTY OF ENGINEERING AND NATURAL SCIENCES
2. GAZI UNIVERSITY
3. GAZIANTEP UNIVERSITY
Abstract
Societies take various initiatives to reduce the impact of natural disasters. Unfortunately, certain nations and regions are better suited than others to finding solutions to the problem, whether for political, cultural, economic, or other factors. This paper deals with the cluster analysis of 170 countries based on world risk index and climate risk index data. We use the k-means approach for clustering in sequential stages of this work. Specifically, we first carry out both the elbow method and silhouette scores to determine the number of clusters. Then clustering analysis is carried out, taking into account the World Risk Index, which includes risks of both exposure and vulnerability. Second, the Climate Risk Index is implemented into the first stage results by clustering countries after determining the number of clusters. Lastly, statistical analyses on the change of clusters for exposure, vulnerability, and climate risk are investigated and discussed in detail. Taken together, each of the risk elements like earthquake, tsunami, socioeconomic development, health care capability, etc. differs by nation. Clusters of countries with similar risks are reported. When the climate risk index is included in the evaluation, the number of clusters increases. The Climate Risk Index has been determined as a variable that cannot be ignored when countries are clustered according to their risk profiles.
Publisher
International Journal of Applied Mathematics, Electronics and Computers