A Genetic Algorithm Optimized ANN for Prediction of Exergy and Energy Analysis Parameters of a Diesel Engine Different Fueled Blends

Author:

YAŞAR Ali1ORCID

Affiliation:

1. SELCUK UNIVERSITY

Abstract

In this research, a hybrid artificial neural network (ANN) optimized by a genetic algorithm (GA) was used to estimate energy and exergy analyses parameters. This article presents an approach for estimating energy and exergy analyses parameters with optimized ANN model based on GA (GA-ANN) for different ternary blends consisting of diesel, biodiesel and bioethanol in a single-cylinder, water-cooled diesel engine. The data used in the experiments performed at twelve different engine speeds between 1000 and 3000 rpm with 200 rpm intervals for five different fuel mixtures consisting of fuel mixtures prepared by blends biodiesel, diesel and 5% bioethanol in different volumes constitute the input data of the models. Using these input data, engine torque (ET), amount of fuel consumed depending on fuels and speed (AFC), carbon monoxide emission values (CO), carbon dioxide emission values (CO2), hydrocarbon emission values (HC), nitrogen oxides emission values (NOx), the amount of air consumed (AAC), exhaust gas temperatures (EGT) and engine coolant temperatures (ECT) were estimated with the GA-ANN. In examining the results obtained were examined, it was proved that diesel, biodiesel and bioethanol blends were effective in predicting all the results mentioned in engine studies performed at 200 rpm intervals in the 1000-3000 rpm range. A standard ANN model used in the literature was also proposed to measure the prediction performance of GA-ANN model. The predictive results of both models were compared using various performance indices. As a result, it was revealed that the proposed GA-ANN model reached higher accuracy in estimating the exergy and energy analyses parameters of the diesel engine compared to the standard ANN technique.

Publisher

International Journal of Applied Mathematics, Electronics and Computers

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3