Effect of Coupling Agent on Properties of Composites Made from Styrofoam Waste and Coconut Shell

Author:

Seong Chun Koay, ,Thangamuthu Subhramani,Ming Yeng Chan,Thai Kiat Ong, , ,

Abstract

Styrofoam is amongst one of the highly used packaging materials due to its lightweight and vibration isolate properties. The usage of styrofoam rises yearly, but it is seldom received by the recycling facilities to recycle the post-consumed styrofoam due to the poor economic viability. The objective of this research is to investigate the potential value of recycling post-consumed styrofoam as feedstock in producing sustainable composite materials. Therefore, this study would increase the feasibility and interest in recycling of styrofoam and indirectly continue the life cycle of styrofoam waste. In this study, the composites with varying compositions were of recycled polystyrene (rPS), coconut shell (CS) and maleated polystyrene (MAPS) compounded using an internal mixer. The effects of compositions on torque rheological, flexural and morphological properties of the composites were investigated. The findings showed that rPS/CS composites filled with more CS content possesses higher processing torque due to increase in viscosity. However, addition of MAPS lowered the viscosity of composites. The flexural properties revealed that the rPS/CS composites without MAPS exhibited the highest flexural strength and modulus of 33.5 MPa and 3.1 GPa, respectively, when the CS content was measured at 30 wt%. Then, the addition of MAPS improved on average 29% of flexural strength and 14% of flexural modulus, individually. The results from scanning electron microscopy showed that the addition of MAPS had improved the interfacial adhesion between rPS matrix and CS particles, which resulted in an improvement on flexural properties. The flexural properties of rPS/CS composites are comparable to wood plastic composites (WPC) as found in literature, which demonstrates its potential to be used in applications similar to WPC.

Publisher

Penerbit Universiti Sains Malaysia

Subject

General Physics and Astronomy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3